
Module 5

Module 5 - Decrease and Conquer Algorithm

1. Understanding Decrease and Conquer Approach

Concepts:

 Definition: A problem-solving approach that exploits the
relationship between a solution to a given instance of a problem
and a solution to its smaller instance.

 Process:

Decrease/Reduce: Reduce the problem instance to a smaller
instance of the same problem.

Conquer/Solve: Solve the smaller instance of the problem.

Extend/Combine: Extend the solution of the smaller instance
to obtain the solution to the original problem.

Comparison with Divide and Conquer:

Divide and Conquer: Divides the problem into multiple
subproblems, solves each subproblem recursively, and
combines their solutions.

Decrease and Conquer: Reduces the problem to a single
smaller subproblem and extends its solution.

Examples:

 Insertion Sort
 Depth-First Search (DFS)
 Breadth-First Search (BFS)

2. Variations of Decrease and Conquer
 Variations:

Decrease by a Constant: The size of the instance is reduced
by the same constant on each iteration.

Examples: Insertion Sort, DFS, BFS, Topological
Sorting, Permutations/Subsets Generation.

Module 5

Decrease by a Constant Factor: The size of the instance is
reduced by the same constant factor on each iteration.

Examples: Binary Search, Fake-Coin Problems, Russian
Peasant Multiplication.

Variable Size Decrease: The size-reduction pattern varies
from one iteration to another.

Examples: Computing Median, Interpolation Search, Euclid’s
Algorithm.

3. Insertion Sort
 Concepts:

Description: A sorting technique where the sorted array is built one
item at a time by inserting elements in their correct position.

Steps:
 Start with the second element and compare it with the
previous elements.

 Insert the element in its correct position by shifting other
elements if necessary.

 Repeat the process for all elements.

void insertionSort(int arr[], int n) {
 for (int i = 1; i < n; ++i) {
 int key = arr[i];
 int j = i - 1;

 while (j >= 0 && arr[j] > key) {
 arr[j + 1] = arr[j];
 j--;
 }
 arr[j + 1] = key;
 }
}

Analogy: Imagine arranging a deck of cards. You pick one card at a
time and place it in the correct position among the already sorted
cards.

Module 5

Depth-First Search (DFS) (STACK)

Concepts:

Description: A graph traversal algorithm that explores as far
as possible along each branch before backtracking.

 Steps:

Visit an adjacent unvisited vertex, mark it as visited, display it,
and push it onto a stack.

 If no adjacent vertex is found, pop a vertex from the stack.

 Repeat until the stack is empty.

Complexity Analysis:

Time Complexity: O(V + E), where V is the number of vertices
and E is the number of edges.

Space Complexity: O(V), due to the extra visited array needed.

 Rules:

Visit the adjacent unvisited vertex. Mark it as visited. Display
it. Push it in a stack.

 If no adjacent vertex is found, pop up a vertex from the stack.

 Repeat Rule 1 and Rule 2 until the stack is empty.

5. Breadth-First Search (BFS) (QUEUE)
 Concepts:

Description: A graph traversal algorithm that explores the
neighbor nodes first before moving to the next level
neighbors.

Module 5

 Steps:

 Visit an adjacent unvisited vertex, mark it as visited, display it,
and insert it into a queue.

 If no adjacent vertex is found, remove the first vertex from the
queue.

 Repeat until the queue is empty.

Complexity Analysis:

 Time Complexity: O(V + E), where V is the number of vertices
and E is the number of edges.

Rules:

 Visit the adjacent unvisited vertex. Mark it as visited. Display
it. Insert it in a queue.

 If no adjacent vertex is found, remove the first vertex from the
queue.

 Repeat Rule 1 and Rule 2 until the queue is empty.

