
Module 2

Module 2 Fundamentals of Algorithm Analysis

1. Recursion vs Iteration

Concepts:

Recursion: A process where a function calls itself directly or
indirectly.
 Example: Calculating factorial using recursion.
 Analogy: Think of opening nested Russian dolls. Each doll
represents a function call until you reach the smallest doll (base
case).

Iteration: Uses repetition structures like loops to execute a set of
instructions repeatedly.
 Example: Calculating factorial using iteration.
 Analogy: Imagine climbing stairs one step at a time until you
reach the top (end condition).

C++ Examples:

// Recursive Factorial
int factorialRecursive(int n) {
 if (n == 0) return 1; // Base case
 return n * factorialRecursive(n - 1);
}

// Iterative Factorial
int factorialIterative(int n) {
 int result = 1;
 for (int i = 1; i <= n; ++i) {
 result *= i;
 }
 return result;
}

Module 2

Types of Recursion

Direct Recursion:

 Function calls itself directly

 void directRecursive() {
 // Some Code
 directRecursive();
 // Some Code
}

Indirect Recursion:

Function fun calls another function fun2, which in turn calls fun.

void fun2(); // Forward declaration

void fun() {
 // Some Code
 fun2();
 // Some Code
}

void fun2() {
 // Some Code
 fun();
 // Some Code
}

Tail Recursion:

The recursive call is the last operation in the function

void tailRecursive(int n) {
 if (n == 0) return;
 std::cout << n << " ";
 tailRecursive(n - 1); // Last operation
}

Module 2

Non-Tail Recursion:

There are operations after the recursive call.

void nonTailRecursive(int n) {
 if (n == 0) return;
 nonTailRecursive(n - 1);
 std::cout << n << " "; // Operation after recursive call
}

Analysis Framework

Efficiency Metrics:

 Time Complexity: Indicates how fast an algorithm runs.
 Space Complexity: Amount of memory required by the
algorithm.

Example:

Consider finding the sum of all elements in an array.

// Time Complexity: O(n)
// Space Complexity: O(1)
int sumArray(int arr[], int n) {
 int sum = 0;
 for (int i = 0; i < n; ++i) {
 sum += arr[i];
 }
 return sum;
}

Analogy: Think of a library cataloging books. The time it takes
depends on the number of books (input size), and the space
needed might include a small notepad to keep track..

Module 2

Asymptotic Notations

Big-O Notation (O):

 Represents the upper bound of an algorithm’s running time.

 Example: If an algorithm has a complexity of O(n²), it means
the running time grows quadratically with input size.

Big-Omega Notation (Ω):

 Represents the lower bound of an algorithm’s running time.

 Example: Ω(n) implies that the algorithm will take at least
linear time.

Theta Notation (Θ):

 Represents both upper and lower bounds.

Example: Θ(n log n) indicates that the algorithm's running time is
tightly bound by n log n.

// O(1) - Constant Time
int getFirstElement(int arr[]) {
 return arr[0];
}

// O(n) - Linear Time
int findElement(int arr[], int n, int key) {
 for (int i = 0; i < n; ++i) {
 if (arr[i] == key) return i;
 }
 return -1;
}

// O(n^2) - Quadratic Time
void printPairs(int arr[], int n) {
 for (int i = 0; i < n; ++i) {
 for (int j = i + 1; j < n; ++j) {
 std::cout << "(" << arr[i] << ", " << arr[j] << ")" << std::endl;
 }
 }

Module 2

}

Best, Worst, and Average Case Analysis
Sequential Search Example:

int sequentialSearch(int arr[], int n, int key) {
 for (int i = 0; i < n; ++i) {
 if (arr[i] == key) return i;
 }
 return -1;
}

Best Case: O(1) – The key is found at the first position.

Worst Case: O(n) – The key is either at the last position or not
present.

Average Case: O(n) – Assuming uniform distribution of the key's
position.

Analogy: Searching for a book in a disorganized shelf:

Best Case: The book is right at the front.

Worst Case: The book is at the back or missing.

Average Case: On average, you might need to check halfway
through the shelf.

