
Introduction to Algorithms

What is an Algorithm?

An algorithm is a step-by-step procedure or set of rules for solving
a problem. Think of it as a recipe for baking a cake: you follow
specific instructions to achieve the desired output (a delicious
cake).

Analogy:

Imagine you're giving directions to a friend to reach your house.
You break down the journey into steps like "Turn left at the traffic
light," "Go straight for 2 km," etc. Similarly, an algorithm breaks
down a computational problem into smaller, executable steps.

Definition:
An algorithm must satisfy the following criteria:

• Input: Takes zero or more inputs.
• Output: Produces one or more outputs.
• Definiteness: Each step is clear and unambiguous.
• Finiteness: Terminates after a finite number of steps.
• Effectiveness: Each operation is basic and executable.

Characteristics of Algorithms

• Unique Name: Every algorithm should have a distinct name to
identify its purpose.

• Well-Defined Inputs/Outputs: Inputs and outputs are explicitly
defined.

• Unambiguous Operations: Each step is precise and leaves no
room for misinterpretation.

• Finite Execution: The algorithm halts after completing its task.

Example

// Example: Algorithm to find the sum of two numbers
#include <iostream>
using namespace std;

int main() {
 int a, b, sum;

 cout << "Enter two numbers: ";
 cin >> a >> b;
 sum = a + b; // Unambiguous operation
 cout << "Sum: " << sum;
 return 0; // Finite execution
}

Steps in Problem Solving

• Problem Definition: Understand the problem clearly. For
example, if the task is sorting, define what "sorted" means.

• Model Development: Create a conceptual model of the
solution.

• Algorithm Specification: Define the algorithm's inputs,
outputs, and steps.

• Design and Testing: Write the algorithm and verify its
correctness.

• Analysis: Evaluate the algorithm's efficiency (time and space
complexity).

• Implementation: Translate the algorithm into code.
• Testing and Documentation: Test the program and document

its functionality.

Algorithm Design and Analysis

Design Principles:

• Divide and Conquer: Break the problem into smaller
subproblems.

• Greedy Approach: Make locally optimal choices at each step.
• Dynamic Programming: Solve overlapping subproblems

efficiently.
• Analysis:
• Time Complexity: Measures how runtime grows with input

size.
• Space Complexity: Measures memory usage.

Example: Linear Search

// Linear search algorithm
#include <iostream>
using namespace std;

int linearSearch(int arr[], int n, int key) {
 for (int i = 0; i < n; i++) {
 if (arr[i] == key) {
 return i; // Return index if found
 }
 }
 return -1; // Return -1 if not found
}

int main() {
 int arr[] = {10, 20, 30, 40, 50};
 int n = sizeof(arr) / sizeof(arr[0]);
 int key = 30;
 int result = linearSearch(arr, n, key);
 if (result != -1) {
 cout << "Element found at index: " << result;
 } else {
 cout << "Element not found";
 }
 return 0;

Applications of Algorithms

Sorting
 Rearranges elements in ascending or descending order.
Common algorithms:

 Bubble Sort
 Insertion Sort
 Selection Sort

Example: Bubble Sort
void bubbleSort(int arr[], int n) {
 for (int i = 0; i < n - 1; i++) {
 for (int j = 0; j < n - i - 1; j++) {
 if (arr[j] > arr[j + 1]) {
 // Swap elements
 int temp = arr[j];
 arr[j] = arr[j + 1];
 arr[j + 1] = temp;
 }

 }
 }
}

int main() {
 int arr[] = {64, 34, 25, 12, 22};
 int n = sizeof(arr) / sizeof(arr[0]);
 bubbleSort(arr, n);
 cout << "Sorted array: ";
 for (int i = 0; i < n; i++) {
 cout << arr[i] << " ";
 }
 return 0;
}

Searching
Finds a specific element in a dataset. Common algorithms:

 Linear Search
 Binary Search

Example: Binary Search

int binarySearch(int arr[], int n, int key) {
 int low = 0, high = n - 1;
 while (low <= high) {
 int mid = low + (high - low) / 2;
 if (arr[mid] == key) {
 return mid;
 } else if (arr[mid] < key) {
 low = mid + 1;
 } else {
 high = mid - 1;
 }
 }
 return -1;
}

int main() {
 int arr[] = {10, 20, 30, 40, 50};
 int n = sizeof(arr) / sizeof(arr[0]);
 int key = 30;
 int result = binarySearch(arr, n, key);

 if (result != -1) {
 cout << "Element found at index: " << result;
 } else {
 cout << "Element not found";
 }
 return 0;
}

Fundamental Data Structures

Arrays
 A collection of elements stored in contiguous memory
locations.

Example:

 int arr[5] = {1, 2, 3, 4, 5};
 cout << "Third element: " << arr[2];

Linked Lists
 A sequence of nodes where each node contains data and a
pointer to the next node.

Stacks and Queues
 Stacks: LIFO (Last In, First Out)
 Queues: FIFO (First In, First Out)

Example: Stack Implementation

#define MAX 100
int stack[MAX], top = -1;

void push(int value) {
 if (top >= MAX - 1) {
 cout << "Stack Overflow";
 } else {
 stack[++top] = value;
 }
}

int pop() {
 if (top < 0) {
 cout << "Stack Underflow";

 return -1;
 } else {
 return stack[top--];
 }
}

Examples and Code Snippets

Euclid's Algorithm for GCD

int gcd(int m, int n) {
 while (n != 0) {
 int r = m % n;
 m = n;
 n = r;
 }
 return m;
}

int main() {
 int m = 60, n = 24;
 cout << "GCD: " << gcd(m, n);
 return 0;
}

