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Breadth-first search

 What is it good for?

 We have a graph and we want to visit every node → we can do it
with BFS

 We visit every vertex exactly once

 We visit the neighbours then the neighbours of these new vertices
and so on

 Memory complexity is not good: we have to store lots of references

 Thats why DFS is usually preferred

 BUT it constructs a shortest path: Dijkstra algorithm does a BFS if all
the edge weights are equal to 1



Breadth-first search

bfs(vertex)

 Queue queue

 vertex set visited true

  queue.enqueue(vertex)

 while queue not empty

  actual = queue.dequeue()

  for v in actual neighbours

   if v is not visited
    v set visited true

    queue.enqueue(v)

    

                                       ITERATION

We have an empty queue at the beginning

and we keep checking whether we have visited

the given node or not

   ~ keep iterating until queue is not empty
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Queue: { }       dequeue node A to be able to process its neighbours → visit all the children, if a node is

   unvisited then enqueue it !!!
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Queue: { B }      node B is not visited → put it to the queue
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Queue: { F B }      node F is not visited → put it to the queue
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Queue: { G F B }      node G is not visited → put it to the queue
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Queue: { G F B }      dequeue the next node → it is B and visit its children + put them into the queue
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Queue: { G F }      dequeue the next node → it is G and visit its children + put them into the queue
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Queue: { C G F }      dequeue the next node → it is G and visit its children + put them into the queue

   if necessary
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Queue: { D C G F }      dequeue the next node → it is G and visit its children + put them into the queue

   if necessary
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Queue: {  }   the queue is empty →  FINISHED !!!



A

C HD

E

F GB

Summary



A

C HD

E

F GB

Summary



A

C HD

E

F GB

Summary



A

C HD

E

F GB

Summary



A

C HD

E

F GB

Summary



Applications

 In artificial intelligence / machine learning it can prove to be very 
important: robots can discover the surrounding more easily with BFS 
than DFS

 It is also very important in maximum flow: Edmonds-Karp algorithm 
uses BFS for finding augmenting paths

 Cheyen’s algorithm in garbage collection → it help to maintain 
active references on the heap memory

 It uses BFS to detect all the references on the heap

 Serialization / deserialization of a tree like structure ( for example 
when order does matter ) → it allows the tree to be reconstructed in 
an efficient manner !!!
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Depth-first search

 Depth-first search is a widely used graph traversal algorithm besides 
breadth-first search

 It was investigated as strategy for solving mazes by Trémaux in the 
19th century

 It explores as far as possible along each branch before 
backtracking // BFS was a layer-by-layer algorithm

 Memory complexity: a bit better than that of BFS !!!



Depth-first search

dfs(vertex)

 vertex set visited true

 print vertex

 for v in vertex neighbours
  if v is not visited

   dfs(v)

   

  

  

  RECURSION

dfs(vertex)

 Stack stack

 vertex set visited true

 stack.push(vertex)

 while stack not empty

  actual = stack.pop()

  for v in actual neighbours

   if v is not visited
    v set visited true

    stack.push(v)

    

     ITERATION
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Recursively check every

unmarked vertices!

 FINISHED

There is no unvisited vertices for the starting

vertex → it means we are done



Applications

 Topological ordering

 Kosaraju algorithm for finding strongly connected components in a 
graph which can be proved to be very important in 
recommendation systems ( youtube )

 Detecting cycles ( checking whether a graph is a DAG or not )

 Generating mazes OR finding way out of a maze
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