
BREADTH FIRST

SEARCH
BFS

Breadth-first search

 What is it good for?

 We have a graph and we want to visit every node → we can do it
with BFS

 We visit every vertex exactly once

 We visit the neighbours then the neighbours of these new vertices
and so on

 Memory complexity is not good: we have to store lots of references

 Thats why DFS is usually preferred

 BUT it constructs a shortest path: Dijkstra algorithm does a BFS if all
the edge weights are equal to 1

Breadth-first search

bfs(vertex)

 Queue queue

 vertex set visited true

 queue.enqueue(vertex)

 while queue not empty

 actual = queue.dequeue()

 for v in actual neighbours

 if v is not visited
 v set visited true

 queue.enqueue(v)

 ITERATION

We have an empty queue at the beginning

and we keep checking whether we have visited

the given node or not

 ~ keep iterating until queue is not empty

A

C HD

E

F GB

Queue: { }

A

C HD

E

F GB

Queue: { A }

A

C HD

E

F GB

Queue: { A } dequeue node A to be able to process its

A

C HD

E

F GB

Queue: { } dequeue node A to be able to process its neighbours → visit all the children, if a node is

 unvisited then enqueue it !!!

A

C HD

E

F GB

Queue: { B } node B is not visited → put it to the queue

A

C HD

E

F GB

Queue: { F B } node F is not visited → put it to the queue

A

C HD

E

F GB

Queue: { G F B } node G is not visited → put it to the queue

A

C HD

E

F GB

Queue: { G F B } dequeue the next node → it is B and visit its children + put them into the queue

 if necessary

A

C HD

E

F GB

Queue: { G F } dequeue the next node → it is G and visit its children + put them into the queue

 if necessary

A

C HD

E

F GB

Queue: { C G F } dequeue the next node → it is G and visit its children + put them into the queue

 if necessary

A

C HD

E

F GB

Queue: { D C G F } dequeue the next node → it is G and visit its children + put them into the queue

 if necessary

A

C HD

E

F GB

Queue: { D C G F }

A

C HD

E

F GB

Queue: { D C G }

A

C HD

E

F GB

Queue: { D C G }

A

C HD

E

F GB

Queue: { D C }

A

C HD

E

F GB

Queue: { H D C }

A

C HD

E

F GB

Queue: { H D C }

A

C HD

E

F GB

Queue: { H D }

A

C HD

E

F GB

Queue: { H D }

A

C HD

E

F GB

Queue: { H }

A

C HD

E

F GB

Queue: { E H }

A

C HD

E

F GB

Queue: { E H }

A

C HD

E

F GB

Queue: { E }

A

C HD

E

F GB

Queue: { E }

A

C HD

E

F GB

Queue: { } the queue is empty → FINISHED !!!

A

C HD

E

F GB

Summary

A

C HD

E

F GB

Summary

A

C HD

E

F GB

Summary

A

C HD

E

F GB

Summary

A

C HD

E

F GB

Summary

Applications

 In artificial intelligence / machine learning it can prove to be very
important: robots can discover the surrounding more easily with BFS
than DFS

 It is also very important in maximum flow: Edmonds-Karp algorithm
uses BFS for finding augmenting paths

 Cheyen’s algorithm in garbage collection → it help to maintain
active references on the heap memory

 It uses BFS to detect all the references on the heap

 Serialization / deserialization of a tree like structure (for example
when order does matter) → it allows the tree to be reconstructed in
an efficient manner !!!

DEPTH FIRST

SEARCH
DFS

Depth-first search

 Depth-first search is a widely used graph traversal algorithm besides
breadth-first search

 It was investigated as strategy for solving mazes by Trémaux in the
19th century

 It explores as far as possible along each branch before
backtracking // BFS was a layer-by-layer algorithm

 Memory complexity: a bit better than that of BFS !!!

Depth-first search

dfs(vertex)

 vertex set visited true

 print vertex

 for v in vertex neighbours
 if v is not visited

 dfs(v)

 RECURSION

dfs(vertex)

 Stack stack

 vertex set visited true

 stack.push(vertex)

 while stack not empty

 actual = stack.pop()

 for v in actual neighbours

 if v is not visited
 v set visited true

 stack.push(v)

 ITERATION

A

C HD

E

F GB

Recursively check every

unmarked vertices!

A

C HD

E

F GB

Recursively check every

unmarked vertices!

A

C HD

E

F GB

Recursively check every

unmarked vertices!

A

C HD

E

F GB

Recursively check every

unmarked vertices!

A

C HD

E

F GB

Recursively check every

unmarked vertices!

A

C HD

E

F GB

Recursively check every

unmarked vertices!

A

C HD

E

F GB

Recursively check every

unmarked vertices!

A

C HD

E

F GB

Recursively check every

unmarked vertices!

A

C HD

E

F GB

Recursively check every

unmarked vertices!

A

C HD

E

F GB

Recursively check every

unmarked vertices!

A

C HD

E

F GB

Recursively check every

unmarked vertices!

A

C HD

E

F GB

Recursively check every

unmarked vertices!

A

C HD

E

F GB

Recursively check every

unmarked vertices!

A

C HD

E

F GB

Recursively check every

unmarked vertices!

A

C HD

E

F GB

Recursively check every

unmarked vertices!

A

C HD

E

F GB

Recursively check every

unmarked vertices!

A

C HD

E

F GB

Recursively check every

unmarked vertices!

A

C HD

E

F GB

Recursively check every

unmarked vertices!

A

C HD

E

F GB

Recursively check every

unmarked vertices!

A

C HD

E

F GB

Recursively check every

unmarked vertices!

A

C HD

E

F GB

Recursively check every

unmarked vertices!

 FINISHED

There is no unvisited vertices for the starting

vertex → it means we are done

Applications

 Topological ordering

 Kosaraju algorithm for finding strongly connected components in a
graph which can be proved to be very important in
recommendation systems (youtube)

 Detecting cycles (checking whether a graph is a DAG or not)

 Generating mazes OR finding way out of a maze

Revisiting breadth-first search

A

C HD

E

F GB

Revisiting breadth-first search

A

C HD

E

F GB

Revisiting breadth-first search

A

C HD

E

F GB

Revisiting breadth-first search

A

C HD

E

F GB

Revisiting breadth-first search

A

C HD

E

F GB

	Slide 1: BREADTH FIRST SEARCH
	Slide 2: Breadth-first search
	Slide 3: Breadth-first search
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Applications
	Slide 35: DEPTH FIRST SEARCH
	Slide 36: Depth-first search
	Slide 37: Depth-first search
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: Applications
	Slide 60: Revisiting breadth-first search
	Slide 61: Revisiting breadth-first search
	Slide 62: Revisiting breadth-first search
	Slide 63: Revisiting breadth-first search
	Slide 64: Revisiting breadth-first search

