Module 2 - Study Notes (CS0051) —2T2024-2025

Overview:

o Concurrency allows a program to execute multiple tasks simultaneously,
improving performance on multi-core processors.

e C++ provides concurrency support through the Threads library, introduced
in C++11 and expanded in later versions (C++14, C++17, C++20/23).

Key Features:

e Threads: Create and manage threads.

o Mutexes and Locks: Prevent race conditions by synchronizing access to
shared data.

« Condition Variables: Allow threads to wait for certain conditions.

e Futures and Promises: Handle asynchronous tasks and return values.

Thread Management
Creating Threads:

o Threads are created using the std::thread class.
o A thread can execute a function, a member function, or a lambda function.

Thread Lifecycle:

« Joinable: A thread is joinable if it is running or has finished but not yet joined.
e Join: Wait for the thread to finish execution.
o Detach: Allow the thread to run independently of the main thread.

Sample Code

#include <iostream>
#include <thread>

using namespace std;

void helloFunction() {

cout << "Hello from function..." << endl;

}

int main() {
cout << "Hello World from main()" << endl;
thread t1(helloFunction);
tl.join();
cout << "Main program ends..." << endl;
return @;

/hit



Module 2 - Study Notes (CS0051) — 2T2024-2025

Sample Code

#include <iostream>
#include <thread>
using namespace std;

class HelloObject {
public:
void objectFunction() {
cout << "Hello from object function" << endl;

bE

int main() {
cout << "Hello World from main()
HelloObject ho;
thread t2(&HelloObject::objectFunction, &ho);

<< endl;

t2.join();
cout << "Main program ends..." << endl;

return 0;

Sample Code

#include <iostream>
#include <thread>
#include <string>
using namespace std;

void helloFunction(int n, string str) {
for (int i = 0; i < n; i++) {
cout << "Hello from function... " << str << endl;

int main() {
cout << "Hello World from main()" << endl;
thread t1(helloFunction, 3, "FEUTECH");
tl.join();

cout << "Main program ends..." << endl;

return 0;

/hit 2



Module 2 - Study Notes (CS0051) — 2T2024-2025

Mutexes and Thread Synchronization

Overview:

o Mutexes are used to prevent race conditions by ensuring that only one thread
can access shared data at a time.
e In C++, mutexes are implemented using the std::mutex class.

Sample Code

#include <iostream>
#include <thread>
#include <mutex>

using namespace std;

mutex mtx;
int sharedData = 0;

void incrementData() {
mtx. lock();
sharedData++;
cout << "Shared Data:
mtx.unlock();

<< sharedData << endl;

main() {

thread til(incrementData);
thread t2(incrementData);
tl.join();

t2.join();

return 0;

/hit 3



Module 2 - Study Notes (CS0051) — 2T2024-2025

Deadlock Avoidance

lock(mtx1, mtx2);: Locks both mutexes simultaneously to avoid deadlock.

#include <iostream>

#include <thread>

#include <mutex>

using namespace std;

mutex mtx1l, mtx2;

void taskl(int threadId) {

cout << "Thread " << threadId
lock(mtx1l, mtx2);

lock_guard<mutex> lockl(mtx1,
lock_guard<mutex> lock2(mtx2,
cout << "Thread " << threadId

this_thread::sleep_for(chrono:

cout << "Thread " << threadld

void task2(int threadId) {

/hit

cout << "Thread " << threadId
lock(mtxl, mtx2);

lock_guard<mutex> lockl(mtx1,
lock_guard<mutex> lock2(mtx2,
cout << "Thread " << threadId

this_thread::sleep_for(chrono:

cout << "Thread " << threadld

main() {

cout << "Starting threads..."
thread tl(taskl, 1);
thread t2(task2, 2);

tl.join();
t2.join()

<< " is attempting to lock mtxl and mtx2." << endl;

adopt_lock) ;

adopt_lock);

<< " has locked mtx1l and mtx2. Task 1 is running." << endl;
:milliseconds(100));

" is releasing mtx1l and mtx2." << endl;

<<

<< " is attempting to lock mtxl and mtx2." << endl;

adopt_lock);

adopt_lock) ;

<< " has locked mtx1l and mtx2. Task 2 is running." <<
:milliseconds(100));

<< " is releasing mtx1l and mtx2." << endl;

cout << "Both threads have finished." << endl;

return 0;




Module 2 - Study Notes (CS0051) — 2T2024-2025

Use std::scoped_lock (C++17)

#include <iostream>
#include <thread>
#include <mutex>
using namespace std;

mutex mtx1l, mtx2;

void taskl(int threadId) {
cout << "Thread " << threadId << " is attempting to lock mtx1l and mtx2." << endl;
scoped_lock lock(mtx1l, mtx2);
cout << "Thread " << threadld << " has locked mtx1l and mtx2. Task 1 is running." << endl;
this_thread::sleep_for(chrono::milliseconds(100));
cout << "Thread " << threadld << " is releasing mtx1l and mtx2." << endl;

void task2(int threadId) {
cout << "Thread " << threadld << " is attempting to lock mtxl and mtx2." << endl;
scoped_lock lock(mtx1l, mtx2);
cout << "Thread " << threadld << " has locked mtx1l and mtx2. Task 2 is running." << endl;
this_thread::sleep_for(chrono::milliseconds(100));

cout << "Thread " << threadld << " is releasing mtx1l and mtx2." << endl;

main() {

cout << "Starting threads..." << endl;
thread til(taskl, 1);

thread t2(task2, 2);

tl.join();
t2.join();

cout << "Both threads have finished." << endl;
return 0;

WITH DEADLOCK

1. Circular Wait: Thread 1 holds Lock A and waits for Lock B, while Thread 2
holds Lock B and waits for Lock A.

2. No Preemption: Locks cannot be forcibly taken away from a thread.

Hold and Wait: Threads hold locks while waiting for additional locks.

4. Mutual Exclusion: Only one thread can hold a lock at a time.

w

/hit 5



Module 2 - Study Notes (CS0051) —2T2024-2025

#include <iostream>
#include <thread>
#include <mutex>

using namespace std;

mutex mtxl, mtx2;

void taskl() {
cout << "Thread 1 is attempting to lock mtx1l." << endl;
mtx1. lock();
cout << "Thread 1 has locked mtx1l." << endl;

this_thread::sleep_for(chrono::milliseconds(100));

cout << "Thread 1 is attempting to lock mtx2." << endl;
mtx2. lock();
cout << "Thread 1 has locked mtx2." << endl;

<< "Thread 1 is running." << endl;

unlock();
unlock();

void task2() {
cout << "Thread 2 is attempting to lock mtx2." << endl;
mtx2. lock();
cout << "Thread 2 has locked mtx2." << endl;

this_thread: :sleep_for(chrono::milliseconds(100));

cout << "Thread 2 is attempting to lock mtx1l." << endl;
mtx1. lock();
cout << "Thread 2 has locked mtx1l." << endl;

cout << "Thread 2 is running." << endl;

mtx1.unlock();
mtx2.unlock();

main()

cout << "Starting threads..." << endl;
thread t1(taskl);

thread t2(task2);

tl.join();
t2.join();

cout << "Both threads have finished." << endl;

return 0;




Module 2 - Study Notes (CS0051) — 2T2024-2025

FIX

void taskl() {
cout << "Thread 1 is attempting to lock mtx1l." << endl;
mtx1. lock();
cout << "Thread 1 has locked mtxl." << endl;

this_thread: :sleep_for(chrono::milliseconds(100));
cout << "Thread 1 is attempting to lock mtx2." << endl;

mtx2. lock();
cout << "Thread 1 has locked mtx2." << endl;

<< "Thread 1 is running." << endl;

unlockl();

unlockl();

void task2() {
cout << "Thread 2 is attempting to lock mtxl." <<
mtx1. lock();
cout << "Thread 2 has locked mtx1l." << endl;

this_thread::sleep_for(chrono: :milliseconds(100));
cout << "Thread 2 is attempting to lock mtx2." <<
mtx2. lock();

cout << "Thread 2 has locked mtx2." << endl;

<< "Thread 2 is running." << endl;

unlock();
unlock();

1. Deadlock occurs when threads wait indefinitely for each other to release
locks.
2. To avoid deadlock:

o Always lock mutexes in the same order.
o Use higher-level constructs like std::lock or std::scoped_lock to lock
multiple mutexes safely.
3. Debugging deadlocks can be challenging, so it's important to design your
code to avoid them from the start.

/hit 7



Module 2 - Study Notes (CS0051) — 2T2024-2025

Data Sharing and Race Conditions
Race Conditions:

e Arace condition occurs when two or more threads access shared data
simultaneously, leading to unpredictable results.

« To prevent race conditions, use mutexes to synchronize access to shared
data.

Sample Code

#include <iostream>
#include <thread>
#include <mutex>
using namespace std;

int sharedData = 0;
mutex mtx;

void incrementData(int threadId) {
for (int i = 0; i < 100000; i++) {
mtx. lock();
sharedData++;
cout << "Thread " << threadId << " incremented sharedData to: " << sharedData << endl;
mtx.unlock();

int main() {

thread tl(incrementData, 1);
thread t2(incrementData, 2);

tl.join();
t2.join();

cout << "Final Shared Data: " << sharedData << endl;
return 0;

/hit 8



Module 2 - Study Notes (CS0051) — 2T2024-2025

Sample Code
Using join() to Wait for Thread Completion

#include <iostream>
#include <thread>

using namespace std;

void threadFunction() {
cout << "Thread is running..." << endl;
this_thread: :sleep_for(chrono::seconds(2));
cout << "Thread is finishing..." << endl;

main() {

cout << "Main thread starts...
thread t(threadFunction);
t.join();

cout << "Main thread ends...
return 0;

<< endl;

"

<< endl;

Sample Code

Using detach() to Run a Thread Independently

#include <iostream>
#include <thread>
using namespace std;

void threadFunction() {
cout << "Thread is running..." << endl;
this_thread: :sleep_for(chrono::seconds(2));

cout << "Thread is finishing..." << endl;

main() {

cout << "Main thread starts...
thread t(threadFunction);
t.detach();

cout << "Main thread ends...
return 0;

"

<< endl;

<< endl;

/hit 9



Module 2 - Study Notes (CS0051) — 2T2024-2025

Sample Code

Using get_id() and sleep_for() to Manage Thread Execution

#include <iostream>
#include <thread>
#include <chrono>
using namespace std;

void threadFunction() {
cout << "Thread ID: " << this_thread::get_id() << " is running..." << endl;
this_thread: :sleep_for(chrono::seconds(1));
cout << "Thread ID: " << this_thread::get_id() << " is finishing..." << endl;

main() {

cout << "Main thread starts..." << endl;
thread tl(threadFunction);

thread t2(threadFunction);

cout << "Thread 1 ID: " .get_id() << endl;
cout << "Thread 2 ID: " .get_id() << endl;

tl.join();
t2.join();

cout << "Main thread ends..."
return 0;

/hit 10



Module 2 - Study Notes (CS0051) — 2T2024-2025

Sample Code

Download Manager (Multiple File Downloads)

#include <iostream>
#include <thread>
#include <chrono>
using namespace std;

void downloadFile(string fileName, int downloadTime) {

" << fileName << "..." << endl;
this_thread::sleep_for(chrono::seconds(downloadTime));
cout << fileName << " downloaded!" << endl;

cout << "Downloading

main() {

string files[] = {"filel.zip", "file2.mp4", "file3.pdf"};
int downloadTimes[] = {3, 5, 2};
const int numFiles = 3;

thread threads[numFiles];

for (int i = 0; i < numFiles; i++) {

(%]
threads[i] = thread(downloadFile, files[i], downloadTimes[i]);

- (int 1 = 0; i < numFiles; i++) {

(]
threads[i].join()

cout << "All downloads completed!" << endl;

return 0;

/hit 11



Module 2 - Study Notes (CS0051) — 2T2024-2025

Bank Account Transactions (Deposit and Withdraw)

Scenario

A bank system allows multiple users to deposit and withdraw money from their
accounts simultaneously. Threads are used to handle concurrent transactions.

clude <iostream>
clude <thread>
#include <mutex>

using namespace std;

mutex mtx;
int balance = 1000;

void deposit(int amount, int threadId) {
cout << "Thread " << threadld << " is attempting to deposit " << amount << "." << endl;
mtx. lock();

<< threadId << " has locked the mutex. Depositing " << amount <<

balance += amount;
cout << "Thread " << threadld << " deposited " << amount << ". New balance: " << balance <<
endl;
mtx.unlock();
<< threadld << " has released the mutex." << endl;

void withdraw(int amount, int threadId) {
<< threadld << " is attempting to withdraw " << amount << "." << endl

cout << "Thread " << threadId << " has locked the mutex. Checking balance for withdrawal."
< endl;
if (balance >= amount)
balance —= amount;
cout << "Thread " << threadld << " withdrawn " << amount << ". New balance: " << balanc
< endl;
} else

cout << "Thread " << threadld << failed to withdraw " << amount <<

. Insufficient ba

lance." << end

)
mtx.unlock();
cout << "Thread " << threadld << " released the mutex." << endl;

nt main()
cout << "Initial balance: " << balance <<

cout << "Starting threads...'

thread tl(deposit, 500,
thread t2(withdraw, 200,
thread t3(withdraw, 1500,

tl.join()
t2.join();

t3.join();

< "Final balance: " << balance << endl;

/hit



Module 2 - Study Notes (CS0051) — 2T2024-2025

Traffic Light System

Scenario:

A traffic light system controls multiple intersections. Each intersection is managed by
a separate thread, simulating concurrent traffic light operations.

nclude <iostream>
#include <thread>
#include <chrono>

using namespace std;

void trafficLight(string intersection, int greenTime, int redTime) {
while (true) {
cout << intersection << ": Green light for " << greenTime << " seconds." << endl;
this_thread::sleep_for(chrono::seconds(greenTime));
cout << intersection << ": Red light for " << redTime << " seconds." << endl;
this_thread::sleep_for(chrono::seconds(redTime));

nt main() {
thread tl(trafficLight, "Intersection 1", 5, 3

thread t2(trafficLight, "Intersection 2", 4,

tl.join();
t2.join();

return 9;

/hit 13



Module 2 - Study Notes (CS0051) — 2T2024-2025

V2

#include <iostream>

#include <thread>

#include <chrono>

using namespace std;

void trafficLight(string intersection, int greenTime, int redTime) {

while (true) {
cout << intersection << ": Green light ON for " << greenTime << " seconds." << endl;

this_thread::sleep_for(chrono::seconds(greenTime));

cout << intersection << ": Yellow light ON for 2 seconds (transition).
this_thread::sleep_for(chrono::seconds(2));

cout << intersection << ": Red light ON for " << redTime << " seconds.
this_thread: :sleep_for(chrono::seconds(redTime));

cout << intersection << ": Yellow light ON for 2 seconds (transition).
this_thread::sleep_for(chrono::seconds(2));

<< "Starting traffic light simulation..." <<

thread tl(trafficLight, "Intersection 1", 5,

thread t2(trafficLight, "Intersection 2", 4, 2

tl.join();
t2.join();

return 0;

/hjt 14



Module 2 - Study Notes (CS0051) —2T2024-2025

V3 With Timestamp

#include <chrono>
#include <iomanip>

using namespace std;

string getCurrentTime() {
auto now = chrono::system_clock: :now();
auto now_time_t = chrono::system_clock::to_time_t(now);
stringstream ss;
ss << put_time(localtime(&now_time_t), "%H:%M:%S5");
return ss.str();

void trafficLight(string intersection, int greenTime, int redTime)

while (true) {

cout << "[" << getCurrentTime() << "] " << intersection << ": Green light ON for " << g
reenTime << " seconds." << endl;
this_thread::sleep_for(chrono::seconds(greenTime));

cout << "[" << getCurrentTime() << "] " << intersection << ": Yellow light ON for 2 sec
onds (transition)." << endl;
this_thread: :sleep_for(chrono::seconds(2));

cout << "[" << getCurrentTime() << "] " << intersection << ": Red light ON for " << red
Time << " seconds." << endl;
this_thread: :sleep_for(chrono::seconds(redTime));

cout << "[" << getCurrentTime() << "] " << intersection << ": Yellow light ON for 2 sec
onds (transition)." << endl;
this_thread::sleep_for(chrono::seconds(2));

int main()
cout << "Starting traffic light simulation..." << endl;
thread tl(trafficLight, "Intersection 1", 5, 3);

thread t2(trafficLight, "Intersection 2", 4, 2);

tl.join();
t2.join();

return 0;




