
Module 2 - Study Notes (CS0051) – 2T2024-2025

/hjt 1

Overview:

• Concurrency allows a program to execute multiple tasks simultaneously,
improving performance on multi-core processors.

• C++ provides concurrency support through the Threads library, introduced
in C++11 and expanded in later versions (C++14, C++17, C++20/23).

Key Features:

• Threads: Create and manage threads.
• Mutexes and Locks: Prevent race conditions by synchronizing access to

shared data.
• Condition Variables: Allow threads to wait for certain conditions.
• Futures and Promises: Handle asynchronous tasks and return values.

Thread Management

Creating Threads:

• Threads are created using the std::thread class.
• A thread can execute a function, a member function, or a lambda function.

Thread Lifecycle:

• Joinable: A thread is joinable if it is running or has finished but not yet joined.
• Join: Wait for the thread to finish execution.
• Detach: Allow the thread to run independently of the main thread.

Sample Code

Module 2 - Study Notes (CS0051) – 2T2024-2025

/hjt 2

Sample Code

Sample Code

Module 2 - Study Notes (CS0051) – 2T2024-2025

/hjt 3

Mutexes and Thread Synchronization

Overview:

• Mutexes are used to prevent race conditions by ensuring that only one thread
can access shared data at a time.

• In C++, mutexes are implemented using the std::mutex class.

Sample Code

Module 2 - Study Notes (CS0051) – 2T2024-2025

/hjt 4

 Deadlock Avoidance

lock(mtx1,	mtx2);: Locks both mutexes simultaneously to avoid deadlock.

Module 2 - Study Notes (CS0051) – 2T2024-2025

/hjt 5

Use std::scoped_lock (C++17)

WITH DEADLOCK

1. Circular Wait: Thread 1 holds Lock A and waits for Lock B, while Thread 2
holds Lock B and waits for Lock A.

2. No Preemption: Locks cannot be forcibly taken away from a thread.
3. Hold and Wait: Threads hold locks while waiting for additional locks.
4. Mutual Exclusion: Only one thread can hold a lock at a time.

Module 2 - Study Notes (CS0051) – 2T2024-2025

/hjt 6

Module 2 - Study Notes (CS0051) – 2T2024-2025

/hjt 7

FIX

1. Deadlock occurs when threads wait indefinitely for each other to release
locks.

2. To avoid deadlock:
o Always lock mutexes in the same order.
o Use higher-level constructs like std::lock or std::scoped_lock to lock

multiple mutexes safely.
3. Debugging deadlocks can be challenging, so it's important to design your

code to avoid them from the start.

Module 2 - Study Notes (CS0051) – 2T2024-2025

/hjt 8

Data Sharing and Race Conditions

Race Conditions:

• A race condition occurs when two or more threads access shared data
simultaneously, leading to unpredictable results.

• To prevent race conditions, use mutexes to synchronize access to shared
data.

Sample Code

Module 2 - Study Notes (CS0051) – 2T2024-2025

/hjt 9

Sample Code
Using join() to Wait for Thread Completion

Sample Code

Using detach() to Run a Thread Independently

Module 2 - Study Notes (CS0051) – 2T2024-2025

/hjt 10

Sample Code

Using get_id() and sleep_for() to Manage Thread Execution

Module 2 - Study Notes (CS0051) – 2T2024-2025

/hjt 11

Sample Code

Download Manager (Multiple File Downloads)

Module 2 - Study Notes (CS0051) – 2T2024-2025

/hjt 12

Bank Account Transactions (Deposit and Withdraw)
Scenario

A bank system allows multiple users to deposit and withdraw money from their
accounts simultaneously. Threads are used to handle concurrent transactions.

Module 2 - Study Notes (CS0051) – 2T2024-2025

/hjt 13

Traffic Light System
Scenario:

A traffic light system controls multiple intersections. Each intersection is managed by
a separate thread, simulating concurrent traffic light operations.

Module 2 - Study Notes (CS0051) – 2T2024-2025

/hjt 14

V2

Module 2 - Study Notes (CS0051) – 2T2024-2025

/hjt 15

V3 With Timestamp

