CS0003 MODULE 1- COMPUTER SYSTEMS & ARCHITECTURE 1TSY2024-2025

Module 1: Assembly Introduction
What is Assembly Language?

Assembly language is defined as a low-level programming language specific to a particular
computer architecture. It serves as a bridge between the machine code that computers
understand and high-level programming languages that humans use.

Basic Architecture of a Computer

INPUT DEVICES OUTPUT DEVICES

CPU

Keyboard —— —— Monitor

Control Unit

Mouse — — Printer
ALU

Scanner |— b — Speaker

Data I Information
Joystick — > Memory > —— Headphones

@stop

Basic Architecture of a Computer

Unlike high-level programming languages, which are designed to be portable across various
systems, assembly language is tailored for a specific type of processor or architecture. Each
family of processors has its own set of assembly instructions.

Assembly language instructions are symbolic representations of machine code, making it
more readable for humans while maintaining a direct correspondence to the machine-level
instructions.

@ // c++ program to display "Hello World”
& // Header file for input cutput functions
finclude <iostream>
> using namespace std;
o=
i // Main() function: where the execution of
// program begins
int main()
{
// Prints hello world
cout << "Hello World™;
return 07
¥
Qutput

Hello World

Prepared by: Dr. Hadiji J. Tejuco 1

CS0003 MODULE 1- COMPUTER SYSTEMS & ARCHITECTURE 1TSY2024-2025

C++ Hello World Program (High Level PL)

section .data Hello, world!

msg db 'Hello, world!"',
len equ $ - msg

section .text
global _start

1
2
3
4
5
6
7
8
9

start:

PR R R R R R R R
co N O hWNR®

Assembly language Hello World Program
Advantages of Assembly Language:

Efficient Use of Resources: Programs written in assembly language are typically more
efficient in terms of memory usage and execution speed compared to programs written in
high-level languages.

Greater Control: Assembly language provides programmers with granular control over
hardware and memory, allowing for the precise management of system resources.

Suitable for Time-Critical Applications: Because of its low-level nature and efficiency,
assembly language isideal for applications that require fast and predictable response times,
such as embedded systems, device drivers, and real-time computing tasks.

Understanding Hardware Interactions: Learning assembly language helps programmers
understand how software interacts with the operating system, processor, and BIOS. This
knowledge is crucial for tasks like optimizing performance, debugging at a low level, or
developing system-level applications.

Prepared by: Dr. Hadiji J. Tejuco 2

CS0003 MODULE 1- COMPUTER SYSTEMS & ARCHITECTURE 1TSY2024-2025

Dis-advantages of Assembly Language:

e [ttakes a lot of time and effort to write the code for the same.

e [tisvery complex and difficult to understand.

e The syntaxis difficult to remember.

e [tlacks portability of programs between different computer architectures as itis
very much machine architecture dependent.

e |tneeds more size or memory of the computer to run the long programs written in
Assembly Language.

Basic Features of PC Hardware:

It explains that the CPU executes instructions and manipulates data stored in memory,
using registers as temporary storage locations.

The concept of a “bit” as the fundamental unit of computer storage is introduced. A “bit”
can be in one of two states: on (1) or off (0). A group of eight bits forms a byte, which is a
common unit of data in computing.

The processor supports the following data sizes:
* Word: a 2-byte data item

¢ Doubleword: a 4-byte (32 bit) data item

¢ Quadword: an 8-byte (64 bit) data item

¢ Paragraph: a 16-byte (128 bit) area

¢ Kilobyte: 1024 bytes

* Megabyte: 1,048,576 bytes

Number Systems:

Binary Number System: This section explains the binary (base-2) number system, which
uses only two digits, 0 and 1. Binary numbers are the most fundamental form of data
representation in computers because they correspond directly to the on/off states of
transistorsin a computer’s processor and memory.

Prepared by: Dr. Hadiji J. Tejuco 3

CS0003 MODULE 1- COMPUTER SYSTEMS & ARCHITECTURE 1TSY2024-2025

Positional Value: In binary, each bit position represents a power of 2. For example, in
the binary number 1011, the rightmost bit represents 2”0, the next bit represents 2*1, then
2”2,and soon.

Binary Arithmetic: Operations such as addition, subtraction, multiplication, and division
follow specific rules in binary, like their decimal counterparts but using only two digits (0 and

1).
Binary to Decimal Conversion:

To convert a binary number to decimal, sum the products of each binary digit (bit) and its
corresponding power of 2.

Example: Convert 1101 to decimal.
Calculation: 11 x273+1x2%2+0x2" +1x2"0
=8 + 4 + 0 + 1

Decimal equivalent: 13

Decimal to Binary Conversion:

To convert a decimal number to binary, repeatedly divide the number by 2 and record the
remainder until the quotientis 0. The binary number is the sequence of remainders read
from bottom to top.

Example: Convert 13 to binary.
Calculation:
13/2=6remainder 1
6 / 2=3remainder0
3 /2=1remainder 1

1/ 2=0remainder1

Binary equivalent: 1101
Binary Addition:
o Binary addition follows these rules:

Prepared by: Dr. Hadiji J. Tejuco 4

CS0003 MODULE 1- COMPUTER SYSTEMS & ARCHITECTURE 1TSY2024-2025

. 0+0=0
. 0+1=1
. 1+0=1
o 1+1 =0 (with a carry of 1)

Example: Add 1011 and 1101.

1011

11000 (carry over occurs in the second column from the right)

Two’s Complement for Negative Numbers:

Two’s complement is a method for representing negative numbers in binary. To find the
two’s complement of a binary number, invert all the bits and add 1.

Example: Find the two’s complement of 0101 (which is 5in decimal).
Invert all bits: 1010
Add 1:1010+1=1011

Two’s complement result: 1011 (which represents -5 in an 8-bit signed integer)

Hexadecimal Number System:

The hexadecimal (base-16) number system is also introduced. Hexadecimal
numbers use digits 0-9 and letters A-F to represent values from 0 to 15. Hexadecimalis often
used in computing as a more human-readable representation of binary data. For example,
a byte can be represented by two hexadecimal digits rather than eight binary digits.

Prepared by: Dr. Hadiji J. Tejuco 5

CS0003 MODULE 1- COMPUTER SYSTEMS & ARCHITECTURE 1TSY2024-2025

Decimal number Binary representation Hexadecimal representation
0 0 0
1 1 1
2 10 2
3 1 3
4 100 4
5 101 5
6 110 6
7 111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 111 F

Hexadecimal to Decimal Conversion:

To convert a hexadecimal number to decimal, multiply each digit by its corresponding
power of 16 and sum the results.

Example: Convert 1A3 to decimal.
Calculation: 1x16"2+10x16"1+3x16"0=256+160+3 =419

Decimal equivalent: 419

Prepared by: Dr. Hadiji J. Tejuco 6

CS0003 MODULE 1- COMPUTER SYSTEMS & ARCHITECTURE 1TSY2024-2025

Decimal to Hexadecimal Conversion:

To convert a decimal number to hexadecimal, repeatedly divide the number by 16 and
record the remainder until the quotient is 0. The hexadecimal number is the sequence of
remainders read from bottom to top.

Example: Convert 419 to hexadecimal.
Calculation:
419/16 = 26 remainder 3
26/16=1 remainder10=Ain hex

1/16=0 remainder 1

Hexadecimal equivalent: 1A3

Hexadecimal to Binary Conversion:
Each hex digit corresponds to a 4-bit binary equivalent.
Example: Convert 2F to binary.
Calculation:
2=0010in binary
F=1111in binary
Binary equivalent: 0010 1111
Binary to Hexadecimal Conversion:

Group binary digits in sets of four (starting from the right) and convert each set to its
hexadecimal equivalent.

Example: Convert 11010111 to hexadecimal.
Group: 1101 and 0111
Calculation:

1101=D

Prepared by: Dr. Hadiji J. Tejuco 7

CS0003 MODULE 1- COMPUTER SYSTEMS & ARCHITECTURE 1TSY2024-2025

0111=7

Hexadecimal equivalent: D7

Prepared by: Dr. Hadiji J. Tejuco 8

CS0003 MODULE 1- COMPUTER SYSTEMS & ARCHITECTURE 1TSY2024-2025

Addressing Data in Memory

“Addressing Data in Memory” is introduced as a fundamental concept for
understanding how the processor accesses and manipulates data stored in a computer’s
memory. This concept is crucial for assembly language programming because it directly
impacts how instructions are written and executed.

Key Concepts of Addressing Data in Memory:
Memory and Its Organization:

A computer’s memory is a collection of storage locations, each with a unique address.
Memory can store instructions, data, and variables that the CPU processes.

The memory model can be segmented or flat. In a segmented model, the memory is
divided into different segments, each of which has a specific purpose (e.g., code, data,
stack). This modelistypical in x86 architecture, where the processor uses segment registers
to access different parts of the memory.

Memory Addressing Modes:

Addressing mode refers to the way in which the operand of an instructionis specified.
In assembly language, different addressing modes allow the programmer to access data
stored in various locations (e.g., registers, memory, immediate values).

Types of Memory Addresses:

Absolute Addressing (Direct Addressing): This mode directly references a specific memory
address. The instruction specifies the actual memory address where the data is located.

Example: MOV AX, [1234H] moves the contents from the memory address 1234H directly
into the AX register.

Segmented Addressing (Offset Addressing): Memory is divided into segments, and
each segment has a base address. An offset value is added to this base address to locate
the exact position of data within the segment.

Prepared by: Dr. Hadiji J. Tejuco 9

CS0003 MODULE 1- COMPUTER SYSTEMS & ARCHITECTURE 1TSY2024-2025

Example: The address 0725H may be interpreted in a segmented model where 07 is the high-
order byte (most significant byte) and 25 is the low-order byte (least significant byte).

The Fetch-Decode-Execute Cycle:

The process through which the CPU executes instructions is known as the fetch-
decode-execute cycle (or simply the execution cycle). It involves three continuous steps:

Fetching: The CPU retrieves the instruction from memory using the instruction pointer (IP)
and loads it into the instruction register (IR).

Decoding: The CPU decodes the instruction to determine what actions are required. It
identifies the opcode (operation code) and the addressing mode.

Executing: The CPU performs the operation specified by the instruction. This may involve
reading from or writing to memory, performing arithmetic operations, or controlling
hardware devices.

Memory addressing plays a critical role in the fetch step, as the CPU needs to know where
in memory to find the next instruction or the data it needs.

Byte Ordering in Memory:

Little-endian vs. Big-endian: In little-endian systems, the least significant byte is stored
first (at the lowest memory address), and the most significant byte is stored last. This is
typical in x86 architectures.

For example, if a 16-bit word 0725H is stored in memory at address 1000H, the processor
will store 25H at 1000H and 07H at 1001H.

Types of Memory Access:

Read Access: The CPU reads data from memory. Thisis a common operation for fetching
instructions or loading data into registers for computation.

Write Access: The CPU writes data to memory. This is used when storing results of
computations or updating program variables.

Prepared by: Dr. Hadiji J. Tejuco 10

CS0003 MODULE 1- COMPUTER SYSTEMS & ARCHITECTURE 1TSY2024-2025

Address Calculation: To access a specific memory location, the CPU calculates the
effective address using the segment and offset values, or directly uses the absolute
address in some addressing modes.

Prepared by: Dr. Hadiji J. Tejuco 11

CS0003 MODULE 1- COMPUTER SYSTEMS & ARCHITECTURE 1TSY2024-2025

Direct Addressing Example:
MOV AX, [2000H]

This instruction moves the data stored at memory address 2000H directly into the
AX register.

The address 2000H is an absolute address that refers to a specific location in memory.

Register Indirect Addressing Example:
MOV AX, [BX]

In this instruction, the register BX holds the memory address of the data to be
moved into the AX register.

This is an example of indirect addressing, where the address of the operand is
specified by a register.

Base plus Index Addressing Example:
MOV AX, [BX + Sl]

This instruction uses both the BX based register and the Sl index register to
calculate the effective address.

The sum of the contents of BX and Sl is used as the address from which the data is
fetched and moved into AX.

Segmented Memory Model Example:

In a segmented model, you might have a data segment (DS) register pointing to the start
of the data segment, and the offset is specified in the instruction:

MOV AX, DS: [1234H]

DS contains the base address of the data segment, and 1234H is the offset within
that segment where the data resides. The CPU calculates the effective address by
combining DS and 1234H.

Prepared by: Dr. Hadiji J. Tejuco 12

