
Module 8

Module 8

Dynamic programming (DP) is a powerful algorithmic technique
used to solve optimization problems by breaking them into smaller
sub-problems. Unlike divide-and-conquer, DP stores the results of
sub-problems to avoid redundant computations, making it highly
efficient for problems with overlapping sub-problems. Below, we
discuss key examples from the uploaded document, provide
analogies, and include C++ programs without using vectors.

Fibonacci Number Series

A naive recursive solution has exponential time complexity due to
repeated calculations. Using DP, we store intermediate results in an
array to reduce the time complexity to O(n).

 Knapsack Problem

 he knapsack problem involves selecting items with given weights
and values to maximize the total value without exceeding the
weight capacity. The DP approach builds a table where each entry
dp[i][w] represents the maximum value achievable with the first i
items and weight w.

 Tower of Hanoi

 The Tower of Hanoi puzzle involves moving disks between three
pegs under specific rules. The DP approach uses recursion to
solve the problem in 2n −1 moves.

Floyd-Warshall Algorithm

The Floyd-Warshall algorithm finds the shortest paths between all
pairs of vertices in a weighted graph. It uses a dynamic
programming table dp[i][j] to store the shortest path between
vertices i and j.

